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Dynamical Conductivity of the Dilute Lorentz Gas
with Spherically Symmetric Scatterers
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The dynamical conductivity of the Lorentz gas with spherically symmetric
potentials is studied to lowest order in the density of scatterers. The frequency-
dependent friction coefficient is calculated from the Fourier transform of the
force-force time-correlation function determined by the dynamics of a single
scattering process. The corresponding dynamical conductivity varies with
frequency on the scale of the inverse collision time. As an example, the conduc-
tivity is calculated for a scattering potential of the Maxwell type.

1. INTRODUCTION

The Lorentz gas is a model of prime importance in the theory of transport
of electrons, neutrons, and photons.(1,2) In the following we use the
language of electrical resistivity. Then the model describes the transport of
electrons in a system of randomly distributed identical static scatterers. We
shall consider only the classical model. Interactions between electrons are
neglected, so that it suffices to consider the motion of a single electron in
the potential of the scatterers. The object of our study is the frequency-
dependent electrical conductivity, as given by linear response theory.

The Kubo-formula of linear response theory provides an exact expres-
sion for the dynamical conductivity.(3) Although justification of its validity
for the measured transport property may require subtle argument(4,5,6) we
shall use it as a starting-point. The Lorentz-Boltzmann kinetic theory is
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based on an approximate equation for the velocity distribution of elec-
trons (1 ,2) valid at low density of scatterers and on the time scale of relaxa-
tion of the mean velocity. Much effort has been devoted to the problem of
its generalization to higher density.(7-10) In the following we restrict our-
selves to low density of scatterers, but consider the short time scale of
single electron-ion collisions, corresponding to high-frequency behavior of
the electrical conductivity.

By the Kubo-formula the electrical conductivity is expressed as the
one-sided Fourier transform of a velocity-velocity time-correlation func-
tion. Our calculation is based on an exact rewriting of this expression in
terms of a force-velocity and a force-force time-correlation function. At low
density it suffices to consider the force-force time-correlation function of a
single scatterer. In the derivation of the exact expression we largely follow
the presentation of Huberman and Chester.(11) An alternative derivation
based on Mori's projection operator formalism has been presented by
Kubo.(5,12,13) An essential additional step is the application of a cluster
expansion, allowing a systematic expansion about the low density system.
Related expansions have been proposed by Zwanzig,(14) van Leeuwen and
Weijland,(15) and by Hauge and Cohen.(16)

We show that for spherical scatterers the low density dynamical con-
ductivity can be calculated exactly. As an example we consider a power law
central potential of the Maxwell type.(17)

2. MEAN VELOCITY

We consider a classical system of electrons of charge — e and mass m,
interacting with randomly distributed identical fixed scatterers. The interac-
tion between electrons is neglected. For mathematical convenience periodic
boundary conditions are imposed, with a simple cubic lattice dividing
space into unit cells of volume Q. Each cell contains N electrons and N,
scatterers. For brevity we shall refer to the scatterers as ions, although their
charge may vanish. Since the electrons are independent, their dynamics in
a unit cell may be described by the single electron Hamiltonian

with potential
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It is assumed that the range is sufficiently short that at most N, ions con-
tribute to the potential at I. The single electron distribution in phase space
f(r, p, t) is required to be periodic in r. It is normalized to

In the presence of an applied electric field E(r, t), which is periodic in r, the
time evolution of the distribution function is given by

where F is the total force exerted on an electron by the ions

For vanishing applied field any function f0(H) of the Hamiltonian is
a stationary solution of Eq. (2.4). We assume that the distribution f0(H)
is normalized as in Eq. (2.3). In linear response theory the distribution
function is expanded in the applied field as

where f1(r, p, t) is linear in E. It satisfies the equation

where £ is the single electron Liouville operator defined by

For uniform oscillating field at frequency w

we consider the solution of Eq. (2.7) oscillating with the same time factor
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with f1 (r, p) satisfying

where f'0(H) = dfQ/dH. The formal solution is

where we have used the property yf'0 = 0.
We are interested in the mean electron velocity

In the stationary state V0 = 0, by symmetry in the momentum. To first
order in E0, with omission of the exponential time factor,

Substituting from Eq. (2.12) we find that the first order mean velocity is
given by

with admittance tensor

We have abbreviated the phase space volume element as dx = dr dp. The
tensor depends parametrically on the configuration X of ions in the unit
cell. Later we shall perform an average over the probability distribution of
configurations W(X), which is assumed known.

3. FRICTION TENSOR

In Eq. (2.16) the admittance tensor for fixed ion configuration is
expressed as the one-sided Fourier transform of a velocity correlation func-
tion. We show in the following that the corresponding friction tensor can
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be expressed in terms of a mixed force-velocity and a force-force correlation
function.(11)

We consider the product pf1o appearing on the right hand side of
Eq. (2.11), and write it in the form

where G is the inverse operator G(a>) = ( — ica + £)-1 . Hence pf1
0 can be

expressed as the sum

The integral over momentum of pf1 vanishes, since the distribution f0(H)
is even in p. Multiplying Eq. (3.2) by F and integrating over phase space
we therefore find the identity

We write this in the form

with the tensors A^ and (J, defined by

The tensor Afl) can be related directly to the admittance tensor <&.
Explicitly Eq. (2.11) reads

Multiplying this by p/Mw, using the definition (2.14), and integrating by
parts on the right hand side we find
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The second term on the left vanishes by periodicity, and in the third we can
integrate by parts. This yields

Substituting in solution f1 from Eq. (2.12) and using the definition (2.15)
we therefore find

With the friction tensor £(co, X, Q) defined by

we find by comparison with Eq. (3.9)

Substituting this into Eq. (3.4) we obtain

The inverse relation reads

Substituting here Eq. (3.4) again we finally find

Thus we have expressed the friction tensor in terms of the two correlation
functions given by Eq. (3.5). In the language of Kubo et al.(5) the tensor
{,,(co, X,Q] is the one-sided Fourier transform of the true force correlation
function, whereas the friction tensor t,(at, X, Q) is the one-sided Fourier
transform of the correlation function of Mori's random force.(18)

4. THERMODYNAMIC LIMIT AND CLUSTER EXPANSION

The relations derived so far are exact. They hold even for one electron
and one ion per unit cell. In the following we consider the thermodynamic
limit of a disordered system with many ions per unit cell. The probability
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distribution W(X) of configurations is assumed given. For simplicity we
assume that the ions are spherically symmetric, so that the configuration X
is completely specified by the positions of the ion centers X=(R1,..., RN)
in the unit cell. The distribution W(X) is assumed normalized to unity and
symmetric in the labels 1,..., Ni. The partial distribution functions

give the probability of finding a configuration of k ions whatever the con-
figuration of the remaining Ni — k ions.

In the thermodynamic limit the cell volume Q, the number of electrons N,
and the number of ions Ni tend to infinity at constant densities n = N/Q
and ni = Ni/Q. The system is assumed to become isotropic in the thermo-
dynamic limit. Since in our case the electrons are independent, it would be
sufficient to consider just a single electron. However, the system at constant
density n corresponds closer to the physical situation. For the finite system
the distribution of values of the tensors AFl,(co, X, Q) and ^,(co, X, Q) is
determined by the probability distribution W(X). In the thermodynamic
limit the tensors become isotropic and the distribution functions of the
components become sharp.(19) The mean values of the diagonal components
can be identified with scalar coefficients y(co), C(co) and A f v (ca) . Because
the distribution functions become sharp, the coefficients are related as in
the preceding section. Thus we have

with, for example,

where the angled brackets indicate the ensemble average over the distribu-
tion W(X).

The three averaged correlation functions can be expanded formally in
terms of an Ursell cluster expansion. For example, in the coefficient £,,
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where CFFk(a>) is the cluster term of order k corresponding to the product
- l/3f1 F• GF on the left hand side. The friction coefficient C ( w ) in Eq. (4.2)
is given by a ratio of two such expansions, taken in the thermodynamic limit.
The ratio can be expanded and rearranged according to the number of ions
involved, in the same way as for the dielectric cluster expansion.(20) This
yields a cluster expansion for the friction coefficient of the form

where k indicates the number of ion labels. The term for k = 1 involves just
a single ion, and is given by

where <p'0(s) is the derivative with respect to energy e(r, p) of the distribution

normalized such that

Here e(r, p) is the value of the Hamiltonian

for an electron in the presence of a single ion centered at the origin. The
force F(r) in Eq. (4.6) is simply the gradient — d q / d r , and the operator G1,
is the inverse ( — ia> + J^ l )

- 1 corresponding to the single-ion Hamiltonian
(4.9). In practical applications the distribution p0(s) will be a Maxwell-
Boltzmann or Fermi-Dirac distribution. In the following we shall consider
a step function <p0(e), for which the derivative — ̂ o(e) is proportional to a
delta-function in the single particle energy.

As evident from Eq. (4.6), the first term in the cluster expansion of the
friction coefficient is linear in the ion density ni. The next term (,i((w) is not
necessarily quadratic in n,, since the pair distribution occurring in the pair
cluster integral may involve higher powers of the density. A truncation of
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the expansion Eq. (4.5) at the pair level leads to long range divergences in
the low frequency limit,(7,8) and resummation is necessary to remove these.
We shall be concerned only with the first order term, given by Eq. (4.6).

5. SINGLE-ION FRICTION COEFFICIENT

In the following we show how the single-ion friction coefficient, given
by Eq. (4.6), can be calculated. We take advantage of the spherical sym-
metry of the ion. In order to calculate the effect of the inverse operator
G 1 ( a > ) = (—i(a + J£' l)

- 1 we consider the solution of the vector equation

or, explicitly,

with F(r) = F(r) r. We solve Eq. (5.2) by the Ansatz

where

This leads to two coupled equations for the functions g+ and h + , which
can be cast in the form

with the abbreviation
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This shows that we may define characteristics in (r, p, £)-space by the
equations

with scalar parameter s along the characteristics. The variables r and p are
positive, whereas £, takes values between — 1 and 1. It is convenient to
choose s = 0 for £ = 0. Then the solutions of Eq. (5.7) have the symmetry

From Eq. (5.7) one finds that the following quantities are constant along
the characteristics

Hence the characteristics are the intersections of the surfaces in (r, p, £)-
space of constant H1(r, p) = e and constant L(r, p , £ ) = L By use of these
constants one can eliminate the variables p and d; and reduce the problem
to a first order ordinary differential equation for r(s),

We note parenthetically that the characteristics may be related to the
radial motion in the central potential <p>(r) by the introduction of the radial
momentum pr by

Then the Hamiltonian becomes
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and the solution r(s), pr(s) of the equations

has H 1 ( r , pr) = e as a constant of the motion. If £(s) is defined from

and p(s) from Eq. (5.11), then L2 defined by Eq. (5.9) takes the constant
value -i2. Eliminating pr from Eq. (5.13) we are again led to Eq. (5.10).

Once the soluton r(s) of Eq. (5.10) has been found we can define the
function

Then Eq. (5.5) becomes

The solutions g+(s,co), h + (s,co) of this set of equations depend parametri-
cally on e and i via the function U(s). In our notation we shall usually not
make the dependence on e and L explicit.

We can regard g+(s,co) and h+(s, at) as one-sided Fourier transforms
of functions g(s, t), h(s, t),

satisfying the partial differential equations
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to be solved with initial conditions

The solution of these equations for all t is given by

where \j/i(s), 4/2(
s) are solutions of the equation

satisfying the conditions

The Fourier transforms of the functions g(s, t), h(s, t) are given by

In the calculation of the friction coefficient d(co) in Eq. (4.6) we need the
positive-frequency part g+(s, at), h+(s,co) of these transforms.

By use of spherical symmetry and the form Eq. (5.3) we find for the
coefficient £i(o>)

The three-dimensional integral is performed conveniently by transforma-
tion to the variables (e, A2, s). From the Jacobian of the transformation one
finds for the new volume element
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In the Appendix we show how the Jacobian can be evaluated. The friction
coefficient becomes

This can be written

with frequency-dependent collision integral

In our explicit evaluation we study the collision integral C+((o; e).

6. FREQUENCY-DEPENDENT COLLISION INTEGRAL

The frequency-dependent collision integral C+(co;e), defined by Eq.
(5.28), can be decomposed into an integral over angular momentum values

with

given by an integral along the characteristic for energy s and angular
momentum L The range of the integral is determined by the range of the
force F(r). Clearly we can write

with the real function C(t; e, 1) defined for all t by
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From Eqs. (5.15) and (5.19) it follows that for t = 0,

so that we may express Eq. (6.4) as

with the time-dependent force along the characteristic (e, A) defined by

Thus C(t; e, 1) may be regarded as a force-force time-correlation function.
It has the Fourier transform

From Eq. (5.20) we find correspondingly

with the functions

Here we have used the symmetries

Performing the integration over s in Eq. (6.4) and the Fourier transform in
Eq. (6.8) we find
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with the functions

Clearly the function C(ca; e, A) is real for real co and is even in u. Hence the
function C(t, s, L) is invariant under time-reversal

We must take the positive frequency part of the expression given in Eq.
(6.12) to find the integrand C+((o; e, 1) in Eq. (6.1). This may be done via
the general rule

for frequency co in the upper half of the complex a> plane. In our numerical
work we shall calculate the positive-frequency part C+(u>; e) from the time-
integral in Eq. (6.3) after integration over L

A typical time scale of decay of the force-force time-correlation func-
tion follows from the definition

From Eq. (6.12) we find

since g(0) = R(0) = 0. The denominator in Eq. (6.16) follows from Eq. (6.6)

Hence the time scale TM(S, 1) can be evaluated from simple quadratures,
once the solutions tj/i(s) and \j/2(s) of Eq. (5.21) have been found. From the
symmetry under time-reversal, Eq. (6.14), it follows that

so that the numerator in Eq. (6.16) may be replaced by C+(0; e, A).
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Finally, we consider the relation to the Lorentz-Boltzmann equation
by which the steady state friction coefficient d(0) is expressed in terms of
the collision cross section.(21) At a particular value of the energy

with 7i(e) given by the integral

where x is the scattering angle and b the impact parameter. This must be
compared with the expression given by Eq. (5.27) with distribution

where the prefactor A follows from the normalization Eq. (4.8). Hence we
find

Substituting into Eq. (5.27) we find at zero frequency for this distribution
by comparison with Eq. (6.20)

The identity follows from Zwanzig's proof(14) that at low density and zero
frequency the admittance is given correctly by the Lorentz-Boltzmann
equation.

7. EXAMPLE

In order to show that the frequency-dependent friction coefficient
Ci(oo) in Eq. (5.27) can be evaluated without great difficulty we study a
specific example. We consider a power law central potential with radial
force

This has the advantage that the solution of the equations of motion has a
scaling property(22) so that our numerical results, which will be given for
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one particular value of the energy e, actually have wider validity. For par-
ticular values of the exponent v the equations of motion can be evaluated
explicitly in terms of elliptic integrals(23) but we shall not follow this route,
since it is more useful to develop a numerical method which can be
employed for a wide class of spherically symmetric potentials.

For a chosen characteristic with values £, k we must first solve
Eq. (5.10) to find the distance r(s) as a function of the parameter s. Then
Eq. (5.15) yields the effective potential U(s) as a function of the parameter.
Next we find the fundamental solutions il/i(s), i/*2(s) of Eq. (5.21) satisfying
the conditions (5.22). This allows us to calculate the functions P((o), Q(u>),
R(co), S(co), given by Eqs. (6.10) and (6.13) as a function of positive fre-
quency co. By symmetry the functions are then also known for negative
frequency. The frequency-dependent collision integral C(a>; s, X] follows
from Eq. (6.12). The calculation must be performed for a discrete, but
dense set of values A. The total frequency-dependent collision integral
C(w; E) for fixed energy e follows by summation over the values A2, as in
Eq. (6.1). It is convenient to perform this summation before taking the
positive frequency part as in Eq. (6.15). The two procedures can obviously
be interchanged.

We have performed an explicit calculation along the above lines for
the force law Eq. (7.1) with exponent v = 5, corresponding to Maxwell
molecules.(17) We choose atomic units, so that we can put m=l, and con-
sider energy e = 1/2 and force constant K = 1 in these units.

In Fig. 1 we plot the effective potential U(s) as a function of the
parameter s for e = \, A. — \. The potential is well localized and has a range
of order unity. In Fig. 2 we plot the total frequency-dependent collision
integral C(co; \] as a function of frequency. From the collision integral we
calculate the time-correlation function C(t; s) by means of the Fourier
transform

We write the time-correlation function in the form

so that y(f, e) has the initial value y(0; e) = 1. From Eq. (6.6) we find for the
initial value C(0; e)
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Fig. 1. Plot of the effective potential U(s), defined by Eq. (5.15), for power law force (7.1)
with v = 5, as a function of the parameter s for potential strength K=1/2 , energy ;; = j and
angular momentum A = ^ (in atomic units).

In Fig. 3 we plot the integrand

as a function of A for e = \. This shows the relative contribution from
different values of the angular momentum to the collision integral. For the
initial value at energy e = ^ we find C(0; \} = 1.087. In Fig. 4 we plot the
reduced time-correlation function y(t; 5) as a function of t. The positive-

Fig. 2. Plot of the frequency-dependent collision integral C(uo;r.) at energy e = 1/2 3as a func-
tion of frequency.
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Fig. 3. Plot of the integrand 2/.C(0; E, A), given by Eq. (7.5), for <; = j for the power law force
with K= 1, v = 5 as a function of angular momentum /..

frequency part C+(at;e) follows from the one-sided Fourier-integral as in
Eq. (6.3). We write the integral in the form

with the mean relaxation time rM(e) defined by

Fig. 4. Plot of the reduced time-correlation function 5'((;t} at energy E = j as a function of
time /.
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so that the function r( — i(mM(e)) is given by

The function F(z) is dimensionless and has the properties

The mean relaxation time iM(e) can be calculated from the collision
integral C(0; s), since C+(0; e) = jC(0; e). In our units we find at e = \ for
the relaxation time TM (^) = 0.786. Assuming exponential time-dependence
for the reduced correlation function y(t',e) we find a Lorentzian lineshape
for the function F(z),

centered at o> = 0. In Fig. 5 we plot the real part Re F(— i(DTM({)) as a
function of <OTM(^) and compare with the Lorentzian approximation
Re F L( — KOT/„(%)). There are clear deviations from the Lorentzian, indicat-
ing a more complicated frequency-dependence.

Fig. 5. Plot of Re r( — UOTM(%)) as a function of reduced frequency anM(|) (solid line) com-
pared with its Lorentzian approximation Re FL( — iaiiM({)), as given by Eq. (7.10) (crosses).
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For the power law potential (7.1) the cross section defined in Eq. (6.21)
is given by(17)

with a numerical coefficient A 1 ( V ) , The value C+(0; ^) = 0.854 is in good
agreement with the relation (6.24) and the numerical value(17) A 1 ( 5 ) = 0.422.

8. DISCUSSION

The preceding calculation shows that for a Lorentz gas of spherical
scatterers the dynamical electrical conductivity can be calculated exactly to
lowest order in density. It would be of interest to compare with molecular
dynamics simulations at various densities. Such simulations have been per-
formed by Joslin and Egelstaff for Lennard-Jones scatterers.(24) These
authors focused on the dynamical scattering function. With minor changes
our calculation can be made to apply in two dimensions. Baranyai et al.(25)

have performed simulations for a triangular lattice of scatterers with soft
potentials. It would be desirable to perform simulations also for a disor-
dered two-dimensional Lorentz gas.

A challenging generalization of our theory would be the approximate
inclusion of Coulomb interactions between electrons in terms of a self-con-
sistent Vlasov field. Such a generalization would allow the calculation in
classical approximation of photoabsorption by ions immersed in a plasma.
The calculation would include single-particle effects and go beyond existing
calculations based on a hydrodynamic model, accounting only for collec-
tive effects.(26,27)

The calculation performed here may suggest methods for the quantum
Lorentz gas. As in the classical case, it would be of interest to include
Coulomb interactions between electrons in a self-consistent manner. Such
a theory would throw light on the intricate quantummechanical problem of
photoabsorption in a plasma, with account of bound-bound, bound-free,
and free-free transitions, as well as collective effects.

APPENDIX

In this Appendix we show how the Jacobian of the transformation from
variables ( r , p , £ , ) to the variables (e, A2, s) can be evaluated. We denote
x = (r, p, £) with components x', and y = (e, A2, s) with components y". At
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every point in x-space with — 1 < £ < 1 one has the differential relations

where Einstein's summation convention is implied. This defines the trans-
formation matrices T and T-1 with elements

The first and second rows of the matrix T are known. Their elements are

as follows from Eq. (5.9). The third column of the inverse matrix T-1 is
also known. Its elements are

as follows from Eq. (5.7). The identity TT-1 = I provides equations relating
the remaining elements. These can be solved, leaving two elements
unknown. In the calculation of the determinant of T the unknown elements
cancel. One finds

This provides the value of the Jacobian given in Eq. (5.25). Remarkably,
the Jacobian is independent of the central force F(r).
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